T O K

ROTARY DAMPERS

Outline

- Types of rotary dampers (Horizontal use, Vertical use, Continuous rotation)
- How to estimate the torque required for a partial rotation angle damper

■ Product families ... 3 - 4
\qquad

- Products overview
- Product introduction P7-68

Type	Torque [$\mathrm{N} \cdot \mathrm{m}$]		$\begin{aligned} & \text { "O.D. } \\ & {[m m]} \end{aligned}$	Page	Type	Torque [$\mathrm{N} \cdot \mathrm{m}$]		$\begin{aligned} & \text { O.D. } \\ & {[m \mathrm{~m}]} \end{aligned}$	Page
TD73	0.05 to 0.29	(0.44 to 2.57)	¢ 11	7-8	TD42	4.90 to 8.83	(43.37 to 78.15)	$\varnothing 40.2$	39-40
TD60	0.49 to 1.96	(4.34 to 17.35)		9-10	TD89	5.0 to 10.0	(44.25 to 88.51)	ø 26	41-42
TD27/28	0.49 to 1.96	(4.34 to 17.35)	ه 22	11 - 14	TD75	0.10 to 0.29	(0.89 to 2.57)	$\triangle 11$	43-44
TD54	0.78 to 1.96	(6.90 to 17.35)	ه 20	15-16	TD38	0.15 to 0.59	(1.33 to 5.22$)$	${ }^{\circ} 2$	45-46
TD56	0.98 to 2.94	(8.67 to 26.02)	¢ 18	17-18	TD99 *V	1.00 to 2.00	(8.85 to 17.70)	$\varnothing 18$	47-48
TD99 * H	0.98 to 1.96	(8.67 to 17.35)	ø 18	19-20	TD148	0.10 to 0.30	(0.89 to 2.66)	\varnothing_{11}	49-50
SR3	1.00	(8.85)		21-22	TD99 *H8V	1.00 to 2.00	(8.85 to 17.70)	$\varnothing 18$	$51-52$
TD100	1.00 to 3.00	(8.85 to 26.55)	ø 16	23-24	TD136	0.002	(0.018)	® 10	53-54
TD112	1.50 to 3.00	(13.28 to 26.55)	¢ 18	25-26	TD101	0.0025 to 0.004	(0.022 to 0.035)	$\varnothing 6$	55-56
TD118	1.50 to 3.50	(13.28 to 30.98$)$	ه 19.8	27-28	TD102	0.0025 to 0.015	(0.022 to 0.133)	ø 14.9	57-58
TD69	1.50 to 4.00	(13.28 to 35.40$)$	χ^{20}	29-30	TD130	0.004	(0.035)	¢ 10	59-60
TD22	2.45 to 3.92	(21.68 to 34.69)	® 16.2	$31-32$	TD88	0.01 to 0.04	(0.09 to 0.35)	® 15	$61-62$
TD133	3.00	(26.55)	® 20	33-34	TD62	0.03 to 0.20	(0.27 to 1.77$)$	¢ 28	63-64
TD129	3.50 to 4.00	(30.98 to 35.40)	\varnothing_{16}	35-36	TD96	0.05 to 0.15	(0.44 to 1.33$)$	® 25	65-66
TD90	3.50 to 5.00	(30.98 to 44.25)		37-38	TD58	0.30 to 1.60	(2.66 to 14.16)	\varnothing_{34}	67-68

O.D.: Outer diameter *H: Horizontal use *V: Vertical use *H\&V: Horizontal \& Vertical use

- Precautions for use
- Warning
- Caution

Rotary dampers operate the applications gently.
The viscous resistance of the oil filled in the rotary damper provides the following advantages: - Control of sudden operation - Noise reduction - Impact mitigation - Safety enhancement

You can select rotary dampers from among the following three product groups according to your application: Partial rotation angle damper for horizontal and vertical uses, and continuous rotation dampers.
Horizontal use
Range of motion:
Limited

Calculating based on the lifting force \& length of application

Torque calculation formula $T[\mathrm{~N} \cdot \mathrm{~m}]=\mathrm{F} \times \ell$
T: Torque [$\mathrm{N} \cdot \mathrm{m}$]
$\ell:$ Length from the fulcrum to the end $[\mathrm{m}]$
F: Lifting force at the lid end [N]
Example) Required torque for F: 2.0 N and $\ell: 0.5 \mathrm{~m}$
$T=2.0 \times 0.5=1.0 \mathrm{~N} \cdot \mathrm{~m}$

Calculating based on the weight \& gravity center of application


```
Torque calculation formula T[ N.m]=m\timesg\timesl
T: Torque [ N}\cdot\textrm{m}
m: Mass [kg]
\(\mathrm{g}:\) Gravitational acceleration is defined as \(9.8 \mathrm{~m} / \mathrm{s}^{2}\)
\(\ell:\) Length from the fulcrum to the gravity center \([\mathrm{m}]\)
```

Example) Required torque for m: 0.408 kg and $\ell: 0.25 \mathrm{~m}$
$\mathrm{T}=0.408 \times 9.8 \times 0.25=1.0 \mathrm{~N} \cdot \mathrm{~m}$

Product families

Index

Partial rotation angle damper
Horizontal use type
Vertical use type
Horizontal \& Vertical use type

1 P7

Horizontal use type
Torque: 0.05 to $0.29 \mathrm{~N} \cdot \mathrm{~m}$

TD27/28
Horizontal use type
Torque: 0.49 to 1.96 r
(Torque adjustment function)

TD56
Horizontal use type
Torque: 0.98 to $2.94 \mathrm{~N} \cdot \mathrm{~m}$

SR3
Horizontal use type
Torque: $1.0 \mathrm{~N} \cdot \mathrm{~m}$
(Automatic torque adjustment function)

TD112
Horizontal use type
Torque: 1.5 to $3.0 \mathrm{~N} \cdot \mathrm{~m}$

2
TD69
Horizontal use type
Horizontal use type
Torque: 1.5 to $4.0 \mathrm{~N} \cdot \mathrm{~m}$

TD133
Horizontal use type
Torque: $3.0 \mathrm{~N} \cdot \mathrm{~m}$

Continuous rotation damper
Continuous rotation type

TD129

Horizontal use type
Torque: 3.5 to $4.0 \mathrm{~N} \cdot \mathrm{~m}$

(2) 6

TD38 Vertical use type

Torque: 0.15 to $0.59 \mathrm{~N} \cdot \mathrm{~m}$

Horizontal \& Vertical use type
 Torque: 0.10 to $0.30 \mathrm{~N} \cdot \mathrm{~m}$

TD102
Continuous rotation type
Toraue: 2.5 to $15.0 \mathrm{mN} \cdot \mathrm{m}$

TD88
Continuous rotation type
Torque: 10.0 to 40.0 mN .m

TD96
Continuous rotation type
Torque: 50.0 to 150.0 mN

TD99
Vertical use type
Torque: 1.0 to $2.0 \mathrm{~N} \cdot \mathrm{~m}$

TD130
Continuous rotation type
Torque: $4.0 \mathrm{mN} \cdot \mathrm{m}$

TD62
Continuous rotation type
Torque: 30.0 to $200.0 \mathrm{mN} \cdot \mathrm{m}$

P67-68
-) 0

TD58

Continuous rotation type
Torque: 0.3 to $1.6 \mathrm{~N} \cdot \mathrm{~m}$

Features

The smallest horizontal use damper(ø 11 mm The form of the TD73 is symmetrical,
So it can be inserted in either direction
Gray color makes the product inconspicuous Best-selling products

Product name	Torave $[\mathbb{N} \cdot \mathrm{m}]($ lb• \cdot in $)$	Damping direction	Shatt color	Product name	Toraue $[\mathbb{N} \cdot \mathrm{m}]($ bbf $\cdot \mathrm{in})$	Damping direction	Shatt color
TD73A1-0.5K	0.05 (0.44)	cw	Natural	TD73B1-0.8K	0.08 (0.71)	cow	Gray
TD73A1-1K	0.10 (0.89)			TD73B1-1K	0.10 (0.89)		
TD73A1-2K	0.20 (1.77)			TD73B1-2K	0.20 (1.77)		
TD73A1-3K	0.29 (2.57)			TD73B1-3K	0.29 (2.57)		

Product specifications

Toraue	$0.29 \mathrm{~N} \cdot \mathrm{~m}(2.57 \mathrm{lff} \cdot \mathrm{in})$
Radial load	N / A
Angle range of closing time	70 to 0 deg.
Temperature	$23 \pm 2^{\circ}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	100,000 cycles

Temperature characteristics

Measured according to the performance management lesting method shown below atter leaving in each designated ambient temperature for over one hour.

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

Inspection specification before shipping

Type	Preset torque $[\mathbb{N} \cdot \mathrm{m}](\mathrm{lb} \cdot \mathrm{in})$	Closing time
0.5K	0.05 (0.44)	2 to 10 sec
0.8k	0.08 (0.71)	
1K	0.10 (0.89)	
2 K	0.20 (1.77)	
3K	0.29 (2.57)	5 to 15 sec

* Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

Product specifications

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft.) All rotary dampers are managed by the following closing time test.

Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

Temperature characteristics

Measured according to the performance management testing method shown below after leaving in each designated ambient temperature for over one hour.

- Jig operation - Free fall with damping

Dimensions related to mounting

Opening angle
TD60A

* Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

RoHS compliant

Product lineup

Features

Equipped with torque adjustment function A dedicated bracket enables the use of this product as a rotary damper hinge

Product name	Torque [$\mathbb{N} \cdot \mathrm{m}]$ (lbf \cdot in)	Damping direction
TD27A1-5/13K	0.49 (4.34) to 1.27 (11.24)	cw
TD2781-5/13K		cow
TD27A1-10/20 K	0.98 (8.67) to 1.96 (17.35)	cw
TD2781-10/20K		cow

Product name	Torque [$\mathbb{N} \cdot \mathrm{m}]($ lbf $\cdot \mathrm{in})$	Damping direction
TD28A1-5/33	0.49 (4.34) to 1.27 (11.24)	CW
TD28B1-5/13K		ccw
TD28A1-10/20K	0.98 (8.67) to 1.96 (17.35)	CW
TD28B1-10/20 K		ccw

Product specifications

Durability

\section*{| Torque | $1.96 \mathrm{~N} \cdot \mathrm{~m}(17.35 \mathrm{llf} \cdot \mathrm{in})$ |
| :--- | :--- |
| Radial load | N / A |
| Angle range of closing time | 70 to 0 deg. |
| Temperature | $23 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$ |
| Durability | 100,000 cycles |}

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.

Operation during measurement
(Secures the housing of a rotary damper and moves its shaft.) All rotary dampers are managed by the following closing time test Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°
Inspection specification before shipping

Type	Preset toraue $\mathbb{N} \cdot \mathrm{m}]($ (bb \cdot in $)$	Closing time
$5 / 13 \mathrm{~K}$	$1.27(11.24)$	3 to 15 sec
$10 / 20 \mathrm{~K}$	$1.96(17.35)$	

Temperature characteristics

Measured according to the performance managemen lesting method shown below after leaving in each designated ambient temperature for over one hour.

Full open position

- Jig operation - Free fall with damping

* Shaft position at the time of shipping: Closed position
* The adjustment slot position at the time of shipping: Max. torque

Damping directions

Rotation directions of the shaft to which torque is applied

-TD27/28

toriontil use

As the torque of the rotary damper is adjustable, it is not necessary to obtain the products with various torques according to the application to be used.
The torque can be adjusted simply by turning the slot of the rotary damper with a flathead screwdriver.
Since the torque adjustment range can be more than doubled, the same rotary damper is applicable to
both an application of $0.49 \mathrm{~N} \cdot \mathrm{~m}$ and an application of $1.27 \mathrm{~N} \cdot \mathrm{~m}$
Adjusting the torque makes coping with fine feeling and variation in an application possible

Torque adjustment method

When increasing the torque

© TD27/28
Bracket
RoHS compliant

Product lineup

Combining TD27/28 with an optional bracket enables the use of his product as a rotary damper hinge.
It can be attached easily, and the shape of the rotary damper hinge
can be changed depending on the method of mounting the bracket.
And the cap of the bracket is detachable and can be used for either side.
It's best to minimize the number of times of detaching the cap)

Product weight: Approx. 15 g
Main materials Housing Cap

* General tolerance: ± 0.3

Dimensions related to mounting

Combination of the products that are mounted outside

Combination of the products that are mounted inside

ovable side Fixed side
TOK, Inc. • 1-17-12, Azusawa, Itabashi, Tokyo, 174-8501, Japan • +81-3-3969-1584 • support@tok-inc.com • tok-inc.com/en
OTD54
RoHS compliant

Product lineup

Features

Made with chemical-resistant PBT plastic is used -100\% plastic version of TD133

Product name	Toraue ($\mathbb{N} . \mathrm{m}$) (btin)	Damping direction	Shaft color	Product name	Toraue (N.NT) (lofin)	Damping direction	Shaft color
TD54A2-8K	0.78 (6.90)	cw	Natural	TD5482-8K	0.78 (6.90)	cow	Fog blue
TD54A2-10 K	0.98 (8.67)			TD54B2-10 K	0.98 (8.67)		
TD54A2-15K	1.47 (13.01)			TD54B2-15K	1.47 (13.01)		
TD54A2-20 K	1.96 (17.35)			TD54B2-20K	1.96 (17.35)		

Product specifications

Durability

Torque	$1.96 \mathrm{~N} \cdot \mathrm{~m}(17.35 \mathrm{lbfin})$
Radial load	N / A
Angle range of closing time	70 to 0 deg.
Temperatue	$2 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	50,000 cycles

Temperature characteristics

Measured according to the performance management lesting method shown below after leaving in each designated ambient temperature for over one hour.

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.

Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

- Jig operation Free fall with damping

Product information

Dimensions related to mounting

[mm]
Opening angle
TD54A

Damping directions

Rotation directions of the shaft to which torque is applied

Horizontal use

Product lineup

Features

High rigidity achieved by the use of zinc alloy Superior damping responsiveness The thin shaft

- Using the attachment, the form of TD56 will be the same as TD99

Product name	Toraue $\mathbb{N} \cdot \mathrm{m}](\mathrm{lb} \cdot \mathrm{in})$	Damping direction	Product name	Toraue $[\mathbb{N} \cdot \mathrm{m}]($ lb \cdot in $)$	Damping direction
TD56A1-10K	0.98 (8.67)	cw	TD56B1-10 K	0.98 (8.67)	cow
TD56A1-15K	1.47 (13.01)		TD56B1-15K	1.47 (13.01)	
TD56A1-20 K	1.96 (17.35)		TD56B1-20K	1.96 (17.35)	
TD56A1-25K	2.45 (21.68)		TD56B1-25K	2.45 (21.68)	
TD56A1-30K	2.94 (26.02)		TD56B1-30K	2.94 (26.02)	

The products with the attachment have "-AT" at the end of the product name.

Product specifications

Durability

Toraue	$2.94 \mathrm{~N} \cdot \mathrm{~m}(26.02 \mathrm{lbf} \cdot \mathrm{in})$
Radial load	N / A
Angle range of closing time	70 to 0 deg.
Temperature	$23 \pm 2^{\circ} \mathrm{C}\left(733.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	50,000 cycles

Temperature characteristics

Measured according to the performance managemen lesting method shown below after leaving in each designated ambient temperature for over one hour.

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

Inspection specification before shipping

Type	Preset torque $[\mathbb{N} \cdot \mathrm{m}](\mathrm{lbf} \cdot \mathrm{in})$	Closing time
10K	0.98 (8.67)	3 to 10 sec
15K	1.47 (13.01)	
20 K	1.96 (17.35)	
25K	2.45 (21.68)	
30 K	2.94 (26.02)	

Product information

Opening angle: 110°
Product weight: Approx. 30 g Allowable radial load (P): 29.4 N

Main materials
Housing Zinc alloy $(Z D C)$ Cap Zinc alloy $(Z D C)$ Ring screw Zinc alloy $(Z D C)$

Dimensions related to mounting

[mm]

Opening angle
TD56A

TD56B

* Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

0 TVOO

RoHS compliant
Horizontal use
Product lineup

Features

Made with chemical-resistant PBT plastic is used

- Best-selling products

The most popular damper design
TD99 series is identifiable by the shaft color

Procuct name	Torque (IN.m) (Ibifin)	Damping direction	Shatt color	Procuct name	Torque [Nm) (bitin)	Damping direction	Shatt color
TD99Al-10 K	0.98 (8.67)	cw	Natural	TD99B1-10 K	0.98 (8.67)	cow	Black
TD99A1-15 K	1.47 (13.01)			TD99B1-15 K	1.47 (13.01)		
TD99A1-20K	1.96 (17.35)			TD99B1-20K	1.96 (17.35)		

Product specifications

Durability

Toraue	$1.96 \mathrm{~N} \cdot \mathrm{~m}(17.35 \mathrm{llf} \cdot \mathrm{in})$
Radial load	NA
Ange range of closing time	70 to 0 deg.
Temperature	$23 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	50,000 cycles

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°
Inspection specification before shipping

Oype	Prese toraue (N.m) (lbfin)	Closing time
10 K	$0.98(8.67)$	5 to 15 sec
15 K	$1.47(13.01)$	
20 K	$1.96(17.35)$	3 to 12 sec

Temperature characteristics

Measured according to the performance management lesting method shown below atter leaving in each designated ambient temperature for over one hour.

- Jig operation - Free fall with damping

Product information

Dimensions related to mounting

Opening angle

TD99B

Damping directions
Rotation directions of the shaft to which torque is applied

Product specifications

Durability

Torque	$1.0 \mathrm{~N} \cdot \mathrm{~m}(8.85 \mathrm{lbf} \cdot \mathrm{in})$
Radial load	N / A
Angle range of closing time	70 to 0 deg.
Temperature	$23 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	300,000 cycles

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[120^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

[^0]

Measured according to the performance managemen lesting methoa shown below after leaving in each designated ambient temperature for over one hour.

Dimensions related to mounting

[mm]

Opening angle

SR3-01-A

SR3-02-B

Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

OTD100

RoHS compliant
Features
-High torque with $\varnothing 16 \mathrm{~mm}$ damper (Up to $3 \mathrm{~N} \cdot \mathrm{~m}$) -High rigidity achieved by the use of zinc alloy for the shaft
-Adding an option, quick release system: SR14, makes it easy to attach/detach the rotary damper
D100B

Product name	Toraue (N.m. (botrin)	Damping direction	Cap color
TD100B1-10K	1.0 (8.85)	cow	Black
TD100B1-15K	1.5 (13.28)		
TD100B1-20K	2.0 (17.70)		
TD100B1-25K	2.5 (22.13)		
TD100B1-30K	3.0 (26.55)		

Product specifications
Durability

Performance management testing method

As the torque of partial rotation angle dampers is not consistent, he closing time measurement jig is used for the performance tests.

Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test

Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°
nspection specification before shipping

Temperature characteristics

Measured according to the performance management testing method shown below after leaving in each designated ambient temperature for over one hour.

Full open position

- Jig operation Free fall with damping

Dimensions related to mounting

Opening angle
TD100A

TD100B

*Shaft position at the time of shipping: Closed position

Rotation directions of the shaft to which torque is applied

Option (SR14)

SR14 is the quick release system that can be attached to and detached from the pin. It can be attached to the shaft with a single touch, and pressing the button detaches it from the pin easily. PBT plastic is used to ensure chemical resistance.

-Product weight: Approx. 6 g
Main materials

Horizontal use

Product lineup
Product image

Long shaft is also available (Shaft length $15 \mathrm{~mm} \rightarrow 22 \mathrm{~mm}$) The products with the attachment have "-AT1" at the end of the product name.

Product specifications

Durability

\section*{| Torgue |
| :--- |
| Radial load |
 | Radial load |
| :--- |
| Angle range of closing time | Temperature}

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.

Operation during measurement
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

Temperature characteristics

Measured according to the performance managemen lesting method shown below after leaving in each designated ambient temperature for over one hour.

Product information

Opening angle: 110°
Product weight: Approx. 30 g Allowable radial load (P): 19.6 N

Main materials
Housing Zinc alloy(ZDC) Cap Plastio (PBT) Shaft Zinc alloy (ZDC)

Dimensions related to mounting

Opening angle
TD112A
TD112B

* Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

OTD118
RoHS compliant

Features

- The products with the highest torque $(3.5 \mathrm{~N} \cdot \mathrm{~m}$) among our plastic rotary dampers - Outer diameter of $\varnothing 19 \mathrm{~mm}$

Product name	Toraue [$\mathrm{N} \cdot \mathrm{m}$] (Ibfin)	Damping direction
TD118A1-15K	1.5 (13.28)	cw
TD118A1-20K	2.0 (17.70)	
TD118A1-25K	2.5 (22.13)	
TD118A1-30K	3.0 (26.55)	
TD118A1-35K	3.5 (30.98)	

Product name	Toraue [$\mathrm{N} \cdot \mathrm{m}$] (lbfin)	Damping direction
TD118B1-15K	1.5 (13.28)	cow
TD118B1-20K	2.0 (17.70)	
TD118B1-25K	2.5 (22.13)	
TD118B1-30K	3.0 (26.55)	
TD118B1-35K	3.5 (30.98)	

Product specifications

Durability
Temperature characteristics

Measured according to the performance management testing method shown below after leaving in each designated ambient temperature for over one hour.

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test. Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°
inspection specification before shipping

- Jig operation
- Free fall with damping

Dimensions related to mounting

Opening angle
TD118A
TD118B

* Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

0 TVOO

RoHS compliant

Features

- Made with super engineering plastic (PEI)

Wide temperature range for operation $\left(-5^{\circ} \mathrm{C}\right.$ to $\left.80^{\circ} \mathrm{C}\right)$ Made with chemical-resistant

- Highest torque with $\varnothing 20 \mathrm{~mm}$ damper (Up to $4 \mathrm{~N} \cdot \mathrm{~m}$)

Product name	Torque [$\mathrm{N} \cdot \mathrm{m}$] (Ibf•in)	Damping direction	Operating temperature range ${ }^{\circ} \mathrm{C} \mid$ l $^{\circ} \mathrm{F}$)	Product name	Torque [$N \cdot m$] (Ibffin)	Damping direction	Operating temperature range ${ }^{\circ} \mathrm{C} \mid\left({ }^{\circ} \mathrm{F}\right)$
TD69A1-15K	1.5 (13.28)	cw	-5 to 80 (23 to 176)	TD69B1-15K	1.5 (13.28)	cow	-5 to 80 (23 to 176)
TD69A1-20 K	2.0 (17.70)			TD69B1-20K	2.0 (17.70)		
TD69A1-25K	2.5 (22.13)			TD69B1-25K	2.5 (22.13)		
TD69A1-30 K	3.0 (26.55)			TD69B1-30K	3.0 (26.55)		
TD69A1-35K	3.5 (30.98)		-5 to 50 (23 to 122)	TD69B1-35K	3.5 (30.98)		-5 to 50 (23 to 122)
TD69A1-40 K	4.0 (35.40)		0 to 40 (32 to 104)	TD69B1-40K	4.0 (35.40)		0 to 40 (32 to 104)

Product specifications
Durability
Temperature characteristics

Torque		$3.5 \mathrm{~N} \cdot \mathrm{~m}(30.98 \mathrm{lbf} \cdot \mathrm{in})$
Radial load		N/A
Angle range of closing time		70 to 0 deg.
Temperature		$23 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	Excluding TD69A1/B1-40K	50,000 cycles
	TD69A/B1-40K	20,000 cycles

Measured according to the performance management testing method shown below after leaving in each designated ambient temperature for over one hour.

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests. [Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test. Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ Horizontal plane: 0

Type	Preset torque [$\mathrm{N} \cdot \mathrm{m}]$ (lbfin)	Closing time
15K	1.5 (13.28)	3 to 12 sec
20K	2.0 (17.70)	
25K	2.5 (22.13)	
30k	3.0 (26.55)	
35K	3.5 (30.98)	
40K	4.0 (35.40)	

Full open position

Product information

Dimensions related to mounting

[mm]

Opening angle

TD69A
TD69B

* Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

Horizontal use
RoHS compliant

Features
Slim design with long mounting shaft
Outer diameter of $\varnothing 16.2 \mathrm{~mm}$
High torque (Up to $4 \mathrm{~N} \cdot \mathrm{~m}$)
Durable for 100,000 cycles
Wide temperature range for operation $\left(-10^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$

Product specifications

Durability

Torque	
Radial load	$\mathrm{N} / \mathrm{A} \cdot \mathrm{m}(34.69 \mathrm{lbf} \cdot \mathrm{in})$
Angle range of closing time	70 to 0 deg.
Temperature	$23 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	100,000 cycles

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode [109 $\rightarrow 70^{\circ}$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

Type	Preset torque $[\mathbb{N} \cdot \mathrm{m}]$ (lbf \cdot in)	Closing time
25K	2.45 (21.68)	4 to 18 sec
35K	3.43 (30.36)	
40K	3.92 (34.69)	

Measured according to the performance management lesting method shown below after leaving in each designated ambient temperature for over one hour.

Full open position

Opening angle
TD22A
TD22B

Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

\section*{OTD133
 RoHS compliant
 Product lineup
 Features
 - Replaceable design with TD69
 - Zinc alloy is applied for the shaft
 - High torque with $\varnothing 20 \mathrm{~mm}$ damper (Up to $3 \mathrm{~N} \cdot \mathrm{~m}$)
 | Product name | Torque $[\mathrm{N} \cdot \mathrm{m}]$ (Ibfin) | Damping direction |
| :--- | :--- | :--- |
| | | | | TD133B1-30K | $3.0(26.55)$ | CCW |
| :--- | :--- | :--- |}

Product information

Dimensions related to mounting

Opening angle
TD133A
TD133B

* Shaft position at the time of shipping: Open position

Damping directions

Rotation directions of the shaft to which torque is applied

[^1]TOK, Inc. • 1-17-12, Azusawa, Itabashi, Tokyo, 174-8501, Japan

Features

- Highest torque with $\varnothing 16 \mathrm{~mm}$ damper (Up to $4 \mathrm{~N} \cdot \mathrm{~m}$) High rigidity achieved by the use of zinc alloy

Product name	Torque $(\mathbb{N} \cdot \mathrm{m})(\mathrm{lb} \cdot \mathrm{f})$	Damping direction
TD129B1-35K	$3.5(30.98)$	cow
TD12981-40K	$4.0(35.40)$	

Product specifications

Durability

Measured according to the performance management testing method shown below after leaving in each designated ambient temperature for over one hour.

Performance management testing method

As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°
Inspection specification before shipping

Type	Preset toraue $\mathbb{N} \cdot \mathrm{m})(\mathrm{lb} \cdot \mathrm{Fin})$	Closing time
35 K	$3.5(30.98)$	5 to 15 sec
40 K	$4.0(35.40)$	3 to 15 sec

Product information

Dimensions related to mounting

Opening angle
TD129A

* Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

Product lineup

Features

- This product has been developed for additional mounting on piano key lids without damping function - Removing the load returns the arm to its
default position automatically
- 4 color variations are available

Product specifications

Durability

Toraue	$5.0 \mathrm{~N} \cdot \mathrm{~m}(44.25 \mathrm{lbf} \cdot \mathrm{in})$
Radial load	NA
Angerange of closing time	70 to 0 deg.
Temperature	$23 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	50,000 cycles

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, he closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test. Test mode $\left[120^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

Inspection specification before shipping
Type Preset toraue $[\mathrm{N} \cdot \mathrm{m}]$ (Ibfin) Closing time 35 K $3.5(30.98)$ 2 to 10 sec 50 K $5.0(44.25)$ 2 to 7 sec

Temperature characteristics

Measured according to the performance management lesting method shown below after leaving in each designated ambient temperature for over one hour.

Closed position

- Jig operation Free fall with damping

Product information

Main materials
Opening angle: 120°
(The arm returns from the closed position to the 90° or larger position automatically)
Product weight: Approx. 124 g
Allowable radial load: (P1) $50 \mathrm{~N},(\mathrm{P} 2) 45 \mathrm{~N}$

General tolerance: ± 0.3

Opening angle

* Arm position at the time of shipping: Open position

RoHS compliant

Features

High rigidity achieved by the use of zinc alloy
Higher torque with horizontal use dampers
(Up to $8.8 \mathrm{~N} \cdot \mathrm{~m}$)
Superior damping responsiveness

Product name	Torque [$\mathrm{N} \cdot \mathrm{m}$) (lbfin)	Damping direction
TD42A2-50K	$4.90(43.37)$	
TD42A2-70K	$6.86(60.72)$	
TD42A2-90K	$8.83(78.15)$	

Product name	Torque [$\mathrm{N} \cdot \mathrm{m}$) (Ibfin)	Damping direction
TD42B2-50K	$4.90(43.37)$	
TD4282-70K	$6.86(60.72)$	
TD42B2-90K	$8.83(78.15)$	

Product specifications

Durability

Performance management testing method

As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[90^{\circ} \rightarrow 60^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\rightarrow-30^{\circ}$ * Horizontal plane: 0°

Temperature characteristics

Measured according to the performance management testing method shown below after leaving in each designated ambient temperature for over one hour.

- Jig operation
- Free fall with damping

Product information

Dimensions related to mounting

Opening angle
TD42A
Fin opennosasion

Damping directions

Rotation directions of the shaft to which torque is applied

Housing secured / Shaft rotatable

RoHS compliant

Horizontal use

Product lineup

Features

-TD89 generates a torque of $10 \mathrm{~N} \cdot \mathrm{~m}$, which is the largest among our products The hinge type design facilitates easy mounting
Its exterior is made of stainless steel and painted zinc alloy
The shaft is chromate-treated to prevent rust

\section*{| Product name | Torque $[\mathrm{N} \cdot \mathrm{m}]$ (lbfin) | Damping direction |
| :--- | :--- | :--- | | TD89A1B1-100K | 10.0 (88.51) | Unidirectional |
| :--- | :--- | :--- |}

Temperature characteristics

Measured according to the performance management testing method shown below after leaving in each designated ambient temperature for over one hour.

Toraue	$10.0 \mathrm{~N} \cdot \mathrm{~m}(88.51 \mathrm{lbf} \cdot \mathrm{in})$
Radial load	N / A
Agge range of closing time	70 to 0 deg.
Temperature	$23 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	50,000 cycles

Performance management testing method

As this product uses two rotary dampers, the damper performance
of each rotary damper is checked before assembling them into a hinge form. As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests. Full open position
Operation during measurement
(Secures the housing of a rotary damper and moves its shaft.) All rotary dampers are managed by the following closing time test.

Test mode $\left[120^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

Product information

Ppening angle: 120°

Product weight: Approx. 365 g Allowable radial load (P): 58.8 N Main materials | Hinge housing | Zinc alloy (ZDC) |
| :--- | :--- |
| Hinge bracket | Stainless steel (SUS) |

Dimensions related to mounting

Opening angle

Product specifications

Durability

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.

Operation during measurement
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[180^{\circ} \rightarrow 160^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 10^{\circ}\right]$ * Horizontal plane: 90°

Type	Preset torque [$\mathrm{N} \cdot \mathrm{m}$] (Ib in)	Closing time
1K	0.10 (0.89)	5 to 15 sec
2K	0.20 (1.77)	
3 K	0.29 (2.57)	

Features

- The smallest vertical use damper ($\varnothing 11 \mathrm{~mm}$ Allowable opening angle of 180° Durable for 100,000 cycles

Product name	Torque $[\mathrm{N} \cdot \mathrm{mj}$ (Ibfin)	Damping direction
TD75B1-1K	$0.10(0.89)$	
TD751-2K	$0.20(1.77)$	
TD75B1-3K	$0.29(2.57)$	

Temperature characteristics

Measured according to the performance management lesting method shown below after leaving in each designated ambient temperature for over one hour.

Product information

General tolerance: ± 0.3

Dimensions related to mounting

Damping directions

Rotation directions of the shaft to which torque is applied

Opening angle: 180° Product weight: Approx. 7 g Allowable radial load (P): 29.4 N

Main materials
Housing Plastic (POM) Cap Plastit (POM) Shaft Zinc alloy (ZDC)

			Vertical use				RoHS compliant		
Product lineup									
		Features							
		- Longselling vertical use type rotary dampers - Allowable opening angle of 180° - Durable for 300,000 cycles - Wide temperature range for operation $\left(-15^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$							
Product image		TD38A		TD38B					
Product name	Torque [N•m] (Ibffin)	Damping direction	Housing color	$\begin{aligned} & \text { Cap } \\ & \text { color } \end{aligned}$	Product name	Torque [N.m] (Ibfoin)	Damping direction	Housing color	$\begin{gathered} \text { Cap } \\ \text { Color } \end{gathered}$
TD38A1-1.5K(R)	0.15 (1.33)	cw	Brown	Black	TD3881-1.5K(L)	0.15 (1.33)	cow	Brown	Puple
TD38A1-3K(R)	0.29 (2.57)		Black	Black	TD3881-3K(L)	0.29 (2.57)		Black	Puple
TD38A1-6K(R)	0.59 (5.22)		Purple	Black	TD3881-6K(L)	0.59 (5.22)		Purple	Puple

Product specifications
Durability

Performance management testing method
As the torque of partial rotation angle dampers is not consistent the closing time measurement jig is used for the performance tests.

Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft.)
All rotary dampers are managed by the following closing time test.
Durability test mode $\left[160^{\circ} \rightarrow\right.$ (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ Shipping inspection mode $\left[180^{\circ} \rightarrow 160^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 10^{\circ}\right]$ * Horizontal plane: 90°

Type	Preset torque $[\mathbb{N} \cdot \mathrm{m}]$ (lffrin)	Closing time
1.5K	0.15 (1.33)	2 to 10 sec
3 K	0.29 (2.57)	
6 K	0.59 (5.22)	

Measured according to the performance management testing method shown below after leaving in each designated ambient temperature for over one hour.

Dimensions related to mounting

[mm]

Opening angle

Damping directions

Rotation directions of the shaft to which torque is applied

Product specifications

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft)
All rotary dampers are managed by the following closing time test.
Durability test mode $\left[5^{\circ} \rightarrow 90^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\rightarrow 5^{\circ}$] Shipping inspection mode $\left[0^{\circ} \rightarrow 90^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 5^{\circ}\right]$ * Horizontal plane: 90°

Type	Preset torque [$\mathrm{N} \cdot \mathrm{m}]$ (lbfin)	Closing time
10k	1.0 (8.85)	5 to 20 sec
15K	1.5 (13.28)	
20 K	2.0 (17.70)	

Measured according to the performance management lesting method shown below after leaving in each designated ambient temperature for over one hour.

Features

The form of the TD148 is symmetrical
so it can be inserted in either direction
The smallest partial rotation angle damper ($\varnothing 11 \mathrm{~mm}$) Equal in shape to and different
in operation feeling from TD73
Best-selling products

Product name	Toraue [$\mathbb{N} \cdot \mathrm{m}]($ lib \cdot in)	Damping direction	Shaft color	Product name	Toraue $\mathbb{N} \cdot \mathrm{m}]($ lbffin)	Damping direction	Shaft color
TD148A1-1K	0.10 (0.89)	cw	Natural	TD14881-1K	0.10 (0.89)	ccw	Sky blue
TD148A1-2K	0.20 (1.77)			TD14881-2K	0.20 (1.77)		
TD148A1-3K	0.30 (2.66)			TD14881-3K	0.30 (2.66)		

Product specifications

> Temperature characteristics

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests.
[Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\rightarrow 0^{\circ}$ * Horizontal plane: 0°

Type	Preset torque $[\mathbb{N} \cdot m$] (bf \cdot n)	Closing time
1 K	0.10 (0.89)	2 to 15 sec
2 K	0.20 (1.77)	
3 K	0.30 (2.66)	

Measured according to the performance managemen esting method shown below after leaving in each designated ambient temperature for over one hour.

Performance management testing method

Product information

Dimensions related to mounting

[mm]

Opening angle
TD148A
TD148B

* Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

Product specifications
Durability

Toraue	$2.0 \mathrm{~N} \cdot \mathrm{~m}(17.70 \mathrm{lof} \cdot \mathrm{fin})$
Radial load	N / A
Angle range of closing time	65 to -45 deg.
Temperature	$23 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 35.6^{\circ} \mathrm{F}\right)$
Durability	50,000 cycles

Performance management testing method
As the torque of partial rotation angle dampers is not consistent, the closing time measurement jig is used for the performance tests. [Operation during measurement]
(Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test.

Test mode $\left[-45^{\circ} \rightarrow 65^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow-45^{\circ}\right]$ * Horizontal plane: 0°

Type	Preset torque [$\mathrm{N} \cdot \mathrm{m}$] (lbtin)	Closing time
10k	1.0 (8.85)	5 to 20 sec
15K	1.5 (13.28)	
20k	2.0 (17.70)	

Temperature characteristics

Measured according to the performance management testing method shown below after leaving in each designated ambient temperature for over one hour.

Dimensions related to mounting

[mm]

Opening angle

TD99A

TD99B

* Shaft position at the time of shipping: Closed position

Damping directions

Rotation directions of the shaft to which torque is applied

RoHS compliant
Continuous rotation

Product information

Product image

\section*{| Product name | Torque $[\mathrm{mN} \cdot \mathrm{m}]$ (lbfin) | Damping direction |
| :--- | :--- | :--- |
 | | $2.0 \pm 0.7(0.02 \pm 0.01) \quad$ Bidirectiona |
| :--- | :--- | :--- |}

The torque of all rotary dampers is measured at a rotational speed of $20 \mathrm{~min}^{-1}$. One direction rotary dampers are not available.

Product specifications

Durability

Measurement of torque at a rotation speed of $20 \mathrm{~min}^{-1}$

Test method	CW \& CCW rotation test
Operation mode	Continuous twist rotation at 360°
Test speed	10 cycles $/$ min
Radial load	NA
Thrust load	N/A
Damper rotation frequency	One rotation in the CW and CCW directions, respectively
Durability	50,000 cycles

Temperature characteristics

The torque achieved during rotation at $20 \mathrm{~min}^{-1}$ in the designated ambient temperature is shown.

Speed characteristics

[mm]

Dimensions related to mounting

Product weight: Approx. 0.4 g
Product weight: Approx. 0.4 g
Main materials

Housing	Plastic (PC)
Cap	Plastic (PC)
Gear	Plastic (POM)
Shart	Plastic (POM)

Product specifications

Measurement of torque at a rotation speed of $30 \mathrm{~min}^{-1}$

Temperature characteristics

The torque achieved during rotation at $30 \mathrm{~min}^{-1}$ in the designated ambient temperature is shown.

Speed characteristics

Product information

- Product weight: Approx. 0.5 g
\qquad

Housing	Plastic (PC)
Shaft	Plastic (PC)

Dimensions related to mounting

RoHS compliant
Continuous rotation

Features

Outer mounting diameter of $\varnothing 14.9 \mathrm{~mm}$
(Small diameter and thin type)
Bidirectional rotary damper
The mounting flange corresponds to the bottom face
The shaft colors enable identification of the torque

Product name	Torque [$\mathrm{mN} \cdot \mathrm{m}$] (lbferin)	mping direction	Shatt color	Product name	Torque [mN•m] (lbforin	mping dired	Shat color
TD102W1-25	$2.5 \pm 1.0(0.02 \pm 0.01)$	Bidire	White	TD102W1-80	$8.0 \pm 1.5(0.07 \pm 0.01)$	Bidirectional	Green
TD102W1-40	$4.0 \pm 1.00(0.04 \pm 0.01)$		Yellow	TD102W1-120	$12.0 \pm 2.0(0.11 \pm 0.02)$		Bla
TD102W1-60	$6.0 \pm 1.5(0.05 \pm 0.01)$		Purple	TD102W1-150	$15.0 \pm 2.5(0.13 \pm 0.02)$		Red

The torque of all rotary dampers is measured at a rotational speed of 20 min.
The products without gear have "(G-L)" at the end of the product name.
One direction rotary dampers are not available.

Product specifications

Durability

Measurement of torque at a rotation speed of 20 min

${ }^{*}$ Test conducting image

Test method	Rack-and-pinion
Travel speed	$16 \mathrm{~mm} / \mathrm{sec}$
Pinion rotation speed	30 min-
Damper rotation frequency	Twi rotation in the CW a and CCW directions, respectively
Durability	20,000 cycles

Temperature characteristics

The torque achieved during rotation at $20 \mathrm{~min}^{-1}$
in the designated ambient temperature is shown.

General tolerance: ± 0.3

Product weight: Approx. 1.5 g (With gear) Allowable radial load (P): 2.0 N
Main materials

Housing	Plastic (PC)
Cap	Plastic (PC)
Gear	Plastic (POM)
Shaft	Plasti (POM)

Dimensions related to mounting
[mm]

Product lineup

The torque of all rotary dampers is measured at a rotational speed of $20 \mathrm{~min}^{13}$ One direction rotary dampers are not available.

Product specifications

Durability

Measurement of torque at a rotation speed of 20 min

Test method	CW \& CCW rotation test
Operation mode	Continuous twist rotation at 360°
Test speed	10 cycles $/$ min
Radial load	N/A
Thrust load	N/A
Damper rotation frequency	One rotation in the CW and CCW directions, respectively
Durability	50,000 cycles

Temperature characteristics

The torque achieved during rotation at $20 \mathrm{~min}^{-1}$ in the designated ambient temperature is shown.

Speed characteristics

Product information

* General tolerance: ± 0.2

Gear specifications
Tyye Standard spur gear Tooth profile Involute and full depth tooth Module 0.6 Pressure angle 20° Number of teeth 10 P.C.D[mm] $\varnothing 6$ Addendum modification - Base tangent length/Number $2.74 / 2$

- Product weight: Approx. 0.4 g - Allowable radial load (P): 2.0 N

Main materials
Housing Plastic (PC) Cap Pastic (P) Gear Plastic (POM)
Sat

Plastic (POM)
Shaft \quad Plastic (POM)
[mm]

RoHS compliant

Continuous rotation

Features

- Outer mounting diameter of $\varnothing 15 \mathrm{~mm}$

One direction rotary damper
Facilitates easy centering during mounting High durability
Product image

Product name	Torque [mN•m] (lbfon)	Damping direction	Cap color	Product name	Teraue [mN $\cdot \mathrm{m}$] (bifin)	Damping direction	Cap color
TD88R1-100	$10.0 \pm 5(0.09 \pm 0.04)$	cw	Dark gray	TD88L1-100	$10.0 \pm 5(0.09 \pm 0.04)$	cow	Gray
TD88R1-200	$20.0 \pm 8(0.18 \pm 0.07)$			TD88L1-200	$20.0 \pm 8(0.18 \pm \pm 0.07)$		
TD88R1-300	$30.0 \pm 9(0.27 \pm 0.08)$			TD88L1-300	$30.0 \pm 9(0.27 \pm 0.08)$		
TD88R1-400	$40.0 \pm 10(0.35 \pm 0.09)$			TD88L1-400	$40.0 \pm 10(0.35 \pm 0.09)$		

The torque of all rotary dampers is measured at a rotational speed of $30 \mathrm{~min}^{-1}$.
The products without gear have "(G-L)" at the end of the product name.
Bidirectional TD88 rotary dampers are not available.

Product specifications

Durability

Measurement of torque at a rotation speed of $30 \mathrm{~min}^{-1}$

Temperature characteristics

The torque achieved during rotation at $30 \mathrm{~min}^{-1}$
in the designated ambient temperature is shown.

Speed characteristics

* General tolerance: ± 0.3

Product weight: Approx. 7 g (With gear) Allowable radial load (P): 5.0 N

Main materials

Dimensions related to mounting

Damping directions

Damping direction of the shaft

RoHS compliant

Features

Middle torque range of our continuous rotation dampers Outer mounting diameter of
$\varnothing 25 \mathrm{~mm}$
Facilitates
mounting easy centering during
A wide
A wide variety of torques

The torque of all rotary dampers is measured at a rotational speed of $30 \mathrm{~min}^{-1}$
The products without gear have " $(G-L)$ " at the end of the product name.
Bidirectional type products have " W " instead of " R " (or " L ") in their names.

Product specifications

Durability

Measurement of torque at a rotation speed of $30 \mathrm{~min}^{-1}$

Test conducting image

Test method	Rack-and-pinion
Travel speed	$24 \mathrm{~mm} / \mathrm{sec}$
Pinion rotation speed	$30 \mathrm{~min}^{\prime}$
Damper rotation frequency	One rotation in the CW and CcW directions, respectively
Durability	100,000 cycles

Temperature characteristics

The torque achieved during rotation at $30 \mathrm{~min}^{-1}$ in the designated ambient temperature is shown.

Speed characteristics

TD62 [mm \quad TD62 (G-L)

$62(\mathrm{G}-\mathrm{L})$

Product weight: Approx. 15 g (With gear) Allowable radial load (P): 13.4 N

Main materials		
Housing		Plastic (POM)
Cap		Plastic (POM)
Gear		Plastic (POM)
Shaft	cw	Stainless steel
	cow	

Plastic (POM)

Dimensions related to mounting

Damping directions

Damping direction of the shaft

Continuous rotation
RoHS compliant

Product lineup

The torque of all rotary dampers is measured at a rotational speed of 20 min.
The products without gear have "(G-L)" at the end of the product name,
Bidirectional TD96 rotary dampers are not available.

Product specifications

Durability

Measurement of torque at a rotation speed of $20 \mathrm{~min}^{-1}$

Temperature characteristics

The torque achieved during rotation at $20 \mathrm{~min}^{-1}$ in the designated ambient temperature is shown.

Speed characteristics

Product information

TD96	[mm]	TD96 (G-L)

Product weight: Approx. 13 g (With gear) Allowable radial load (P): 13.4 N

Dimensions related to mounting

$$
[\mathrm{mm}]
$$

Damping directions

Damping direction of the shaft

RoHS compliant
Continuous rotation

Product lineup

Features

Highest torque among our continuous rotation dampers
Outer mounting diameter of
$\varnothing 31 \mathrm{~mm}$
Facilitates easy centering during mounting
A wide variety of torques
Best-selling continuous rotation

Product name	Toraue [$\mathrm{N} \cdot \mathrm{m}$] (lbf \cdot in)	Damping direction	Cap color
TD58R1-3K	$0.3 \pm 0.06(2.66 \pm 0.53)$	cW	Dark gray
TD58R1-5K	$0.5 \pm 0.10(4.43 \pm 0.89)$		
TD58R1-8K	0.8 ± 0.16 (7.08 $\pm 1.42)$		
TD58R1-16K	$1.6 \pm 0.32(14.16 \pm 2.83)$		

Product name	Torque $[\mathbb{N} \cdot \mathrm{m})($ lb• $\cdot \mathrm{in})$	Damping direction	Cap color
TD58L1-3K	$0.3 \pm 0.06(2.66 \pm 0.53)$		
TD58L1-5K	$0.5 \pm 0.10(4.43 \pm 0.89)$	cow	Gray
TD58L1-8K	$0.8 \pm 0.16(7.08 \pm 1.42)$		
TD58L1-16K	$1.6 \pm 0.32(14.16 \pm 2.83)$		

The torque of all rotary dampers is measured at a rotational speed of $30 \mathrm{~min}^{-1}$
The products without gear have "(G-L)" at the end of the product name.
Bidirectional type products have " W " instead of " R " (or "L") in their names.

Product specifications

Durability

Measurement of torque at a rotation speed of 30 min

est conducting image

Temperature characteristics

The torque achieved during rotation at $30 \mathrm{~min}^{-1}$ in the designated ambient temperature is shown.
\qquad

Speed characteristics

Dimensions related to mounting

Damping directions

Damping direction of the shaft

Precautions for use

FAQS

Read before use.

\triangle Warning

Precautions to prevent injury and accidents,

Improper use could lead to damage and breakage
Carefully read the specifications and precautions for the rotary dampers and carry out the initial performance verification, durability test, and environment test to sufficiently verify the quality and safety of the product to which the rotary damper is mounted.
Disassembly, modification, reworking, and repair of rotary dampers could cause an accident Disassembling, modifying, reworking, or repairing rotary dampers is prohibited
A deterioration in performance or strength may lead to a malfunction or an accident

- Do not use beyond the product specifications and ratings

Using the rotary dampers outside the range of their product specifications could cause an accident.
Do not set on fire
Setting fire to a rotary damper could cause a fire or an explosion
Do not use rotary dampers as stopper
Be sure to place a stopper to prevent the opening/closing angle of the rotary damper from exceeding its allowable limit.

Do not use the rotary damper if it is found to be defective.
The performance of the rotary damper may be insufficient, leading to an accident.

© Caution

Describes the precautions for using the rotary dampers safely and correctly.

- Secure sufficient strength of the peripheral component to which the rotary damper is mounted Consider the safety factor of the component to which the rotary damper is mounted, based on the load torque, to prevent it from breaking.
a the not use outside the range of the operating temperature, and sufficient performance cannot be achieved.

Do not apply a load exceeding the preset torque.
Any use under a load exceeding the specified torque described on the specification sheet of each rotary damper or under an external force that operates the opening/closing angle of the rotary damper in 1.0 second or less could cause breakage.

Avoid attaching an organic solvent (such as thinner and ether) or using it in a corrosive atmosphere. Organic solvents could melt or decrease the strength of the components of the rotary dampers.
reat as industrial waste when disposing.
For environmental preservation, dispose of according to the law concerning waste treatment and cleaning.

About rotary dampers

Q: Please tell what "CW/CCW" means in terms of the direction
A: The direction of rotation of the shaft in which torque is generated.
When looking from the shaft side with the housing fixed, torque is generated:
if the shaft is rotated clockwise - CW (R)
if the shaft is rotated counterclockwise - CCW (L)
in both directions - CW \& CCW
Q: What kind of oil is used?
A: Silicone oil.
Q: Athough the direction of rotation of the shaft of the rotary damper is shown in the catalog, what will happen if the housing is rotated?
A: The direction of rotation in which torque is generated is the opposite,
If the shaft direction of rotation as described in the catalog is CW , rotating the housing
in the CCW direction generates torque. The torque characteristics are the same
as the ones that can be obtained when the shaft is rotated.
Q: Can partial-rotation-angle rotary dampers produce a damping effect from bidirectional rotation? A: Yes, they can.

Q: Will the torque value be doubled if two rotary dampers are mounted to an application?
A: Yes, it will.
Example: The torque of the lid: $2.0 \mathrm{~N} \cdot \mathrm{~m}$
Mount the rotary dampers onto both sides of the lid in a way
such that the shaft faces inward.
TD99A1-10K (1.0 N•m in the CW direction)
TD99B1-10K $(1.0 \mathrm{~N} \cdot \mathrm{~m}$ in the CCW direction
Q: I'd like to know about the places and methods of use for the products in detal
A: The operations of the products are explained on our website in detail.
Please search for "TOK Applications" and refer to the Application page

About torque

Q: What is the torque management condition for the continuous-rotation rotary dampers described in the catalog?
A: The basic measurement condition is $30 \mathrm{~min}-1$ in a thermoneutral $\left(23 \pm 2^{\circ} \mathrm{C}\right)$ environment
Q: Why do the incoming products behave differently from the graph shown in the catalog?
A: The graph shows typical values, and its operation is not guaranteed.
All products shall comply with the product specifications specified by TOK.
Q: Can rotary dampers, which are applicable to any other torque than as described in the catalog, be fabricated?
A: It's on a case-by-case basis. Please contact us.
Q: Is it possible to fabricate rotary dampers whose torque values are odd, but not nice round values, such as $5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}$, and 20 K ?
A: Although the torque values can be adjusted more or less, the unit price increases because of customization.

About the tests of rotary dampers

Q: Is it possible to carry out a new test that is not carried out by TOK?
A: It is almost possible.
There may be an additional cost depending on the test conditions,
(Example: A case where the test cannot be carried out with existing equipment
or where it takes a long time to carry out the test)

About prices

Q: Does the product price vary depending on the torque value, even within the same product series? A: Some products with relatively higher torque have higher prices, even within the same product series.

Q: What is the difference in price between the products in the catalog and the ones not in the catalog? A: As it depends on the specifications and quantity of the product that a customer desires please contact us.

About purchase

Q: Are you selling products online?
A: No, we are not. There are TOK branch offices in Japan, China, the USA, and Germany. Please contact each TOK office to purchase our products.

Q: Please advise about the minimum order quantity (MOQ).
A: The MOQ is 10 pcs
Q: Please advise about the payment conditions.
A: Payment is T. T. remittance in advance.
Q: Please advise about trade terms
A: The trade terms for the first order are EXW TOKYO,
For products in mass production quantities, trade terms are discussed separately (TBD).
Q: What kind of currencies do you handle?
A: Japanese yen and US dollars.
Q: Do you have local distributors?
A: We have distributors in Asia and Germany.
We can ship products from TOK bases in Japan, China, and the United States.

About production

Q: How long is the lead time before delivery?
A: The products in stock are shipped within one week after receipt of payment Anytime products are out of stock, we estimate the lead time, so please contact us,
Q: How long is the lead time for fabrication of a mold?
A: As a rough indication, it takes approximately three months before submission of a mold sample.
Q: Please advise about production bases
A: We have factories in Japan (Yamanashi) and China (Shanghai and Shenzhen).
In our factories in China, production is implemented according to Japanese management criteria Only mass production is implemented in our factories in China, and small-lot production is implemented in Japan.
Q: Please advise about packing method.
A: Please contact us, because it varies depending on the product type and quantity sold.

Sales office

TOK, Inc. Headquarters
1-17-12, Azusawa, Itabashi, Tokyo, 174-8501, Japan
t: +81-3-3969-1584 (Japanese/English) • e: support@tok-inc.com • web: tok-inc.com/en

Shanghai TOK Precision Damper Bearing Co.,Ltd
Bldg2, 3 Yanghebang Road, Jiuting Town, Songjiang District, Shanghai, China 201615
t: +86-21-6769-6909 (English/Japanese/Mandarin) • web: shtok.1688.com
TOK Precision Component (Shenzhen) Co.,Ltd
1-1 1-5 Yanbao Street, Zhongxin, Village, Pingdi Town, Long gang District, China
t: +86-755-8994-3116 (Japanese/Mandarin) • web: shop1403801654111.1688.com

TOK Industry (H.K) Ltd
Rm.1711, 17/F Landmark North, 39 Lung Sum Avenue, Sheung Shui, N.T., Hong Kong, China t: +852-2690-2829 (English/Japanese/Mandarin/Cantonese)

TOK America, Inc.
15707 Rockfield Blvd. Suite, 240 Irvine, CA 92618 USA
t: +1-844-486-5872 (English/Japanese) • e: contact@tok-usa.com • web: tok-usa.com
TOK Europe GmbH
ABD Business Center 4F, Oststr. 54, 40211 Düsseldorf Germany t: +49-211-9350-131 (English/Japanese) • e: support@tok-inc.com

Factory

TOK, Inc. Yamanashi Factory
809, Shimoimai, Kai-city, Yamanashi Pref., 400-0105 Japan
t: +81-551-28-4581 (Japanese)

Shanghai TOK Precision Damper Bearing Co.,Ltd Shanghai Factory
Bldg2, 3 Yanghebang Road, Jiuting Town, Songjiang District, Shanghai, China 201615
t: +86-21-6769-6773 (English/Japanese/Mandarin) • web: shtok.1688.com
$\star_{*^{*}}^{*}$ TOK Precision Component (Shenzhen) Co.,Ltd Shenzhen Factory
1-1 1-5 Yanbao Street, Zhongxin, Village, Pingdi Town, Long gang District, China
t: +86-755-8994-3116 (Japanese/Mandarin) • web: shop1403801654111.1688.com

[^0]: Inspection specification before shipping \begin{tabular}{l|l|}
 \hline Closing time

 \hline

 \hline Type \& $1.0(8.85)$ \& 1.5 to 6 sec

 \hline 10 K \& \&

 \hline
 \end{tabular}

[^1]: Inspection specification before shipping Typ Presellorque ($\mathbb{N} \cdot \mathrm{m}$) (IbFin) Closing time

 Performance management testing method
 As the torque of partial rotation angle dampers is not consistent. the closing time measurement jig is used for the performance tests.

 Operation during measurement
 (Secures the housing of a rotary damper and moves its shaft) All rotary dampers are managed by the following closing time test

 Test mode $\left[110^{\circ} \rightarrow 70^{\circ}\right.$ (Pause) \rightarrow (Free fall with damping) $\left.\rightarrow 0^{\circ}\right]$ * Horizontal plane: 0°

